

January 19, 2024

Video Services Forum (VSF)

Technical Recommendation TR-10-13

Internet Protocol Media Experience (IPMX):
 Privacy Encryption Protocol (PEP)

 2 VSF TR-10-13

© 2024 Video Services Forum

This work is licensed under the Creative Commons Attribution-
NoDerivatives 4.0 International License. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nd/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

http://www.videoservicesforum.org

INTELLECTUAL PROPERTY RIGHTS

RECIPIENTS OF THIS DOCUMENT ARE REQUESTED TO SUBMIT, WITH THEIR
COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT CLAIMS OR OTHER
INTELLECTUAL PROPERTY RIGHTS OF WHICH THEY MAY BE AWARE THAT MIGHT
BE INFRINGED BY ANY IMPLEMENTATION OF THE RECOMMENDATION SET
FORTH IN THIS DOCUMENT, AND TO PROVIDE SUPPORTING DOCUMENTATION.

THIS RECOMMENDATION IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS
EXPRESSLY DISCLAIMED. ANY USE OF THIS RECOMMENDATION SHALL BE MADE
ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY
OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO
ANY MPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS
RECOMMENDATION.

LIMITATION OF LIABILITY

VSF SHALL NOT BE LIABLE FOR ANY AND ALL DAMAGES, DIRECT OR INDIRECT,
ARISING FROM OR RELATING TO ANY USE OF THE CONTENTS CONTAINED HEREIN,
INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS,
LOSS OF PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON BREACH OF
CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT
LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THE FOREGOING NEGATION OF DAMAGES IS A FUNDAMENTAL
ELEMENT OF THE USE OF THE CONTENTS HEREOF, AND THESE CONTENTS WOULD
NOT BE PUBLISHED BY VSF WITHOUT SUCH LIMITATIONS.

http://www.videoservicesforum.org/

 3 VSF TR-10-13

Executive Summary

This Technical Recommendation describes a method generating keying material for encrypting,
decrypting and authenticating media content over multicast and unicast networks. It is designed
to support multiple types of transport protocol adaptations. The default adaptation defined in this
document describes privacy encryption of media streams having an RTP payload format. Other
adaptations are possible for other transport protocols such as USB over IP, SRTP and SRT.

 4 VSF TR-10-13

Table of Contents

3 Introduction (informative) .. 4

4 Contributors .. 6

5 About the Video Service Forum ... 7

6 Conformance Notation .. 7

7 Normative References ... 8

8 Definitions ... 9

9 Abbreviations .. 9

10 Notations ... 10

11 Operations and Functions ... 10

12 Privacy Key Derivation ... 11

13 SDP transport file parameters / NMOS transport parameters ... 13

14 Multiplexed streams and Bidirectional streams .. 21

15 Privacy Cipher .. 23

16 Sender / Receiver Model (Informative) .. 24

17 Key distribution .. 27

18.1 Key distribution through HTTPS (informative) ... 28

18 Safety .. 29

19 Test vectors for key derivation (informative section) ... 31

20 RTP transport protocol adaptations .. 35

21.1 RTP Header Extensions ... 37

1.1.1 CTR Full RTP Extension Header ... 38

2.1.1 CTR Short RTP Extension Header ... 38

21.2 RTP Payload format ... 38

21.3 Dynamic key_version ... 40

21.4 IPMX integration with HDCP support ... 40

21 Other transport protocol adaptations ... 41

3 Introduction (informative)
The privacy encryption protocol (PEP) is based on a set of Pre-Shared Keys (PSK) stored in
Sender and Receiver Devices to control access to media content. A Receiver can access content

 5 VSF TR-10-13

from various Senders, each possibly having its own PSK. A set of PSKs are programmed in each
Sender and Receiver Device in a secure way through a proprietary device configuration interface
using a secure communication method.

A privacy attribute and an associated set of parameters in the Sender's SDP transport file and/or
in NMOS transport parameters provide a Receiver with all the necessary information for
deriving, the encryption key used by a Sender, by using the PSK. A Controller transports keying
material information from a Sender to subscribed Receivers through the SDP transport file
and/or NMOS transport parameters.

This Technical Recommendation presents the key derivation process and the associated
requirements. The key derivation process may be used with various transport protocol
adaptations. This Technical Recommendation presents the adaptation for RTP. Companion
documents can be used to present adaptations for other transport protocols such as USB over IP,
SRTP, SRT, etc.

Figure 2 illustrates the various layers that comprise the Privacy Encryption Protocol. The Key
Derivation layer is responsible for deriving a privacy_key from a given PSK and associated
keying material. The ECDH layer provides the extra key_pfs keying material for peer-to-peer
scenarios. The Key Derivation layer is also responsible for providing the dynamic key_version
to transmit in-band to the Protocol Adaptation layer (used for the KDF of the encryption key).
The Protocol Adaptation layer is responsible for providing the authentication and
encryption/decryption functions and for transmitting/receiving the ciphered content using an
associated transport protocol. The Protocol Adaptation layer is also responsible for providing the
dynamic key_version, received in-band, to the Key Derivation layer (used for the KDF of the
decryption key).

 6 VSF TR-10-13

Figure 1 - Privacy Encryption Protocol layers

4 Contributors
The following individuals participated in the Video Services Forum IPMX working group that
developed this Technical Recommendation.

Alain Bouchard (Matrox) Andreas Hildebrand (ALC NetworX)
Andrew Starks (Macnica) Ben Cope (Intel)
Brad Gilmer (VSF) Clark Williams (Christie Digital Systems)
Dan Holland (DHC) Daniel Bouquet (Analog Way)
Danny Pierini (Matrox) François-Pierre Clouet (intoPIX)
Greg Schlechter (Intel) Greg Stigall (Warner Media)
Jack Douglass (PacketStorm) Jean Lapierre (Matrox)
Jed Deame (Nextera Video) Karl Paulsen (Diversified)
Lynn Rowe (AlchemediaSG LLC) Marc Levy (Macnica)
Mike Boucke (AJA) Paulo Francisco (Evertz)
Prinyar Boon (PHABRIX) Raymond Hermans (Adeas)
Sara Seidel (Riedel) Steve Kolta (Christie Digital)
Tadahiro Watanabe (Macnica) Thomas True (NVIDIA)
Tim Bruylants (intoPix) Wes Simpson (LearnIPvideo)
Wojtek Tryc (Ross Video)

Key Derivation layer

Protocol Adaptation layer

privacy_key key_version (*_KV protocols)

key_generator key_version key_id

all PSK

protocol mode iv

key_pfs

ECDH layer
(optional)

ecdh_sender_public_key

ecdh_receiver_public_key
ecdh_curve

 7 VSF TR-10-13

5 About the Video Service Forum
The Video Services Forum, Inc. (www.videoservicesforum.org) is an international association
dedicated to video transport technologies, interoperability, quality metrics and education. The
VSF is composed of service providers, users and manufacturers. The organization’s activities
include:

● providing forums to identify issues involving the development, engineering, installation,
testing and maintenance of audio and video services;

● exchanging non-proprietary information to promote the development of video transport
service technology and to foster resolution of issues common to the video services industry;

● identification of video services applications and educational services utilizing video
transport services;

● promoting interoperability and encouraging technical standards for national and
international standards bodies.

The VSF is an association incorporated under the Not For Profit Corporation Law of the State of
New York. Membership is open to businesses, public sector organizations and individuals
worldwide. For more information on the Video Services Forum or this document,
please call +1 929-279-1995 or e-mail opsmgr@videoservicesforum.org.

6 Conformance Notation
Normative text describes elements of the design that are indispensable or contain the
conformance language keywords: "shall," "should," or "may."

Informative text is potentially helpful to the user but not indispensable and can be removed,
changed, or added editorially without affecting interoperability. Informative text does not contain
any conformance keywords.

All text in this document is, by default, normative, except the Introduction and any section
explicitly labeled as "Informative" or individual paragraphs that start with "Note:”

The keywords "shall" and "shall not" indicate requirements strictly to be followed to conform to
the document and from which no deviation is permitted.

The keywords "should" and "should not" indicate that, among several possibilities, one is
recommended as particularly suitable, without mentioning or excluding others; or that a certain
course of action is preferred but not necessarily required; or that (in the negative form) a certain
possibility or course of action is deprecated but not prohibited.

The keywords "may" and "need not" indicate courses of action permissible within the limits of
the document.

http://www.videoservicesforum.org/
http://www.videoservicesforum.org/members/members.htm
http://www.videoservicesforum.org/membership/membership.htm
mailto:opsmgr@videoservicesforum.org

 8 VSF TR-10-13

The keyword “reserved” indicates a provision that is not defined at this time, shall not be used,
and may be defined in the future. The keyword “forbidden” indicates “reserved” and in addition
indicates that the provision will never be defined in the future.

A conformant implementation according to this document is one that includes all mandatory
provisions ("shall") and, if implemented, all recommended provisions ("should") as described. A
conformant implementation need not implement optional provisions ("may") and need not
implement them as described.

Unless otherwise specified, the order of precedence of the types of normative information in this
document shall be as follows: Normative prose shall be the authoritative definition; Tables shall
be next; followed by formal languages; then figures; and then any other language forms.

7 Normative References
- NIST.FIPS.180-4: FIPS PUB 180-4, Secure Hash Standard (SHS), August 2015.
- NIST.FIPS.197: Advanced Encryption Standard (AES), November 26, 2001
- NIST.FIPS.198-1: FIPS PUB 198-1, The Keyed-Hash Message Authentication Code

(HMAC), July 2008
- NIST.SP.800-108Rev1: Recommendation for Key Derivation Using Pseudorandom

Functions, August 2022.
- NIST.SP.800-186: Recommendations for Discrete Logarithm-based Cryptography:

Elliptic Curve Domain Parameters, February 2023.
- NIST.SP.800-38a: Recommendation for Block Cipher Modes of Operation, Methods and

Techniques, December 2001
- NIST.SP.800-38b: Recommendation for Block Cipher Modes of Operation: The CMAC

Mode for Authentication May 2005
- NIST.SP.800-56aRev3: Recommendation for Pair-Wise Key-Establishment Schemes

Using Discrete Logarithm Cryptography, April 2018
- RFC 8088: How to Write an RTP Payload Format, May 2017
- RFC 8285: A General Mechanism for RTP Header Extensions, October 2017
- SEC1v2 SEC 1: Elliptic Curve Cryptography, May 21, 2009, Version 2.0
- JT-NM TR-1001-1:2020: System Environment and Device Behaviors For SMPTE ST

2110 Media Nodes in Engineered Networks, November 11, 2020
- VSF TR-10-5: Internet Protocol Media Experience (IPMX): HDCP Key Exchange

Protocol, March 23, 2022
- VSF TR-10-8: Internet Protocol Media Experience (IPMX): NMOS Requirements, April

14, 2023
- ST 2022-7:2019: Seamless Protection Switching of RTP Datagrams, December 26, 2018

 9 VSF TR-10-13

8 Definitions
|| A concatenation of Octet Strings in big-endian format.

Controller A software component that manages, controls and coordinates the
operations of a number of Senders and Receivers in a network,
such as an NMOS Controller.

CRLF A carriage return character immediately followed by a line feed
character.

Device A physical or virtual entity that is designed to perform a specific
function or task within a system.

Octet String An ordered sequence of Octets in big-endian format.

Octet A binary value of eight bits.

Perfect Forward Secrecy A security property in cryptographic protocols where the
compromise of long-term secret keys does not compromise the
confidentiality of past or future communications.

Pre-Shared Key A cryptographic key that is agreed upon and shared in advance
between communicating parties.

Receiver Device A Device having a number of Receivers.

Receiver As per "JT-NM TR-1001-1:2020, v1.1", it is a "Receiver Media
Node" that consumes a privacy encrypted stream using ST 2110 or
IPMX.

Sender Device A Device having a number of Senders.

Sender As per "JT-NM TR-1001-1:2020, v1.1", it is a "Sender Media
Node" that produces a privacy encrypted stream using ST 2110 or
IPMX.

9 Abbreviations
AAD Additional Authenticated Data

KDF Key derivation function

MAC Message Authentication Code

PEP Privacy Encryption Protocol

 10 VSF TR-10-13

PFS Perfect Forward Secrecy

PRF Pseudo Random Function

PSK Pre-shared key

ECDH Elliptic Curve Diffie-Hellman

10 Notations
Octet An Octet is represented in text form as two hexadecimal digits. A

hexadecimal digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F, a, b, c, d, e, f. Unless otherwise specified both upper and lower
case letters are allowed. The leftmost hexadecimal digit
corresponds to the most significant 4 bit of the Octet. The rightmost
digit corresponds to the least significant 4 bit.

Octet String An Octet String is represented in text form as a sequence of Octets
from left to right. Unless otherwise specified the Octets may be
separated by spaces. The leftmost Octet corresponds to the most
significant Octet of a numeral value and occupies the lowest
address in memory. The rightmost Octet corresponds to the least
significant Octet of a numeral value and occupies the highest
address in memory. Octet0 is the leftmost Octet of an Octet String.
OctetN is the rightmost Octet of an Octet String counting N+1
Octet. For an Octet String named my_var, my_var0 corresponds to
the Octet0 of such an Octet String.

11 Operations and Functions
CIPHK(M) As per the definition in NIST.SP.800-38a. The variable K may be

replaced by the name of a key as in CIPHkey(M) where the key is
named 'key'.

CMAC(K, M) As per the definition in NIST.SP.800-38b. The variable K may be
replaced by the name of a key as in CMAC(key, M) where the key
is named 'key'.

HIGH(X) Return the most significant N bits of X where N corresponds to half
the number of bits in X

HMAC-SHA-512/256(K,M) As per the definition in NIST.FIPS.198-1 and NIST.FIPS.180-4
The variable K may be replaced by the name of a key as in HMAC-
SHA-512/256 (key, M) where the key is named 'key'.

 11 VSF TR-10-13

LOW(X) Return the least significant N bits of X where N corresponds to half
the number of bits in X

12 Privacy Key Derivation
Senders and Receivers that produce or consume a privacy encrypted stream shall derive a
privacy_key as described in this Technical Recommendation and utilize it to obtain an
encryption or decryption key. Such stream may be unidirectional or bidirectional and may
comprise a set of sub-streams, each independently privacy encrypted, and having its own
direction. Sub-streams that are not independently privacy encrypted, such as FEC sub-streams,
are not subject to this recommendation.

Note: By definition a Sender produces one stream and a Receiver consumes
one stream. The concept of sub-stream is used to support scenarios
where a Sender multiplexes a number of sub-streams and
encrypts/decrypts them independently. See the section 14 for more
details.

The privacy_key shall be derived from a Pre-Shared Key (PSK), a key generator
(key_generator), a key version (key_version) and a Perfect Forward Secrecy shared secret
(key_pfs) using a KDF in counter mode as per NIST.SP.800-108Rev1 section 4.1.

The KDF function shall use CMAC as the PRF as defined by NIST SP 800-108Rev1 for a KDF
using a PRF in counter mode for a PSK of 128 and 256 bits.

The KDF function shall use HMAC-SHA-512/256 as the PRF as defined by NIST SP 800-
108Rev1 for a KDF using a PRF in counter mode for a PSK of 512 bits. The CMAC algorithm is
specified in NIST SP 800-38b and may use an AES-128 (128-bit key) or AES-256 (256-bit key)
block cipher. The HMAC and SHA-512/256 algorithms are specified in NIST FIPS 198-1 and
NIST FIPS 180-4.

A Perfect Forward Secrecy mode based on ECDH as per NIST.SP.800-56aRev3 section 6.1.2.2
may be used to further restrict access to a privacy encrypted stream to only the two parties on
each side of a peer-to-peer connection. The ECDH is performed using domain parameters as per
NIST.SP.800-186 for curves “secp256r1” (NIST P-256), “25519” (NIST Curve25519), “448”
(NIST Curve448) and “secp521r1” (NIST P-521).

128-bit key derivation (PSK is 128 bits):

privacy_key = CMAC(PSK, AB || key_generator || key_version || key_pfs)

256-bit key derivation (PSK is 128 or 256 bits):

privacy_key = CMAC(PSK, AB || key_generator || key_version|| HIGH(key_pfs)) ||

 12 VSF TR-10-13

 CMAC(PSK, CD || key_generator || key_version|| LOW(key_pfs))

256-bit key derivation (PSK is 512 bits):

privacy_key = HMAC-SHA-512/256(PSK, AB || key_generator || key_version|| key_pfs)

• The privacy_key shall be 128 bits for AES-128 and 256 bits for AES-256. It is an Octet
String in binary form.

• The PSK shall be 128 bits for AES-128 and may be 128 bits, 256 bits or 512 bits for
AES-256. With a 128-bit PSK, CMAC(PSK, M) shall use the AES-128 block cipher.
With a 256-bit PSK, CMAC(PSK, M) shall use the AES-256 block cipher. If a 128-bit
PSK is used for deriving a 256-bit privacy_key, the CMAC(PSK, M) shall use the AES-
128 block cipher. With a 512-bit PSK, HMAC-SHA-512/256(PSK, M) shall use the
SHA-512/256 hash function.

The PSK shall be provided to a Sender/Receiver by an administrator and identified by a
key_id. The key_id is provided by a Sender and obtained by a Receiver using an SDP
transport file and/or NMOS transport parameters. The PSK is an Octet String in binary
form.

• The key_generator shall be 128 bits. It shall be provided by a Sender and obtained by a
Receiver using an SDP transport file and/or NMOS transport parameters. It is an Octet
String in binary form.

• The key_version shall be 32 bits. It shall be provided by a Sender and obtained by a
Receiver using an SDP transport file and/or NMOS transport parameters. It may also be
transmitted/received along with the ciphered content by a Sender/Receiver configured for
in-band dynamic changes of the encryption key. The key_version is an Octet String in
binary form.

• The key_pfs shall be a shared secret value calculated by each peer executing an ECDH
protocol from the peer public key. For curves “secp256r1” (NIST P-256), “25519” (NIST
Curve25519), “448” (NIST Curve448) and “secp521r1” (NIST P-521) the secret value
has 255, 256, 448 and 521 bits respectively. The key_pfs value corresponds in size and
value to the Z value as specified in NIST.SP.800-56aRev3 section 5.7.1.2. A Controller
shall exchange the public keys at the activation of the Sender and Receiver. A peer public
key shall be ephemeral and unique to a given activation of a Sender/Receiver. At boot /
reset / init time or when a Sender/Receiver becomes inactive, a Sender/Receiver shall
generate a new ECDH private/public keys pair. When using redundancy, the legs shall
use the same ECDH private/public keys pair. When an ECDH mode of operation is not

 13 VSF TR-10-13

used, the key_pfs value shall be an empty Octet String. It is an Octet String in binary
form.

Note: The standard Montgomery X-coordinate encoding used for curves
25519 and 448 uses little-endian ordering of the bytes. To keep
consistency among the curves, the bytes of such encoding are
reversed in key_pfs which is in big-endian format.

13 SDP transport file parameters / NMOS transport parameters
Privacy encryption parameters, summarized in Table 1, are communicated/exchanged using an
SDP transport file and/or NMOS transport parameters. Additionally, the key_version parameter
is communicated/exchanged in-band along with the ciphered content when a protocol supporting
in-band dynamic key versions is used.

For transport protocols using an SDP transport file:

• A Sender shall communicate privacy encryption parameters using a privacy session
attribute or a number of privacy media attributes in the privacy encrypted stream's
associated SDP transport file. A Sender in an NMOS environment shall also
communicate the privacy encryption parameters using the privacy extended NMOS
transport parameters. The privacy encryption parameters protocol, mode, iv,
key_generator, key_version and key_id shall all be provided by a Sender when using
the SDP or NMOS mechanisms. The privacy encryption parameters
ecdh_sender_public_key, ecdh_receiver_public_key and ecdh_curve shall all be
provided by a Sender when using the NMOS mechanism. The privacy encryption
parameters provided by a Sender simultaneously in the SDP transport file and the NMOS
transport parameters shall be identical. The privacy encryption parameters provided by a
Sender in an SDP transport file and/or the NMOS transport parameters shall not change
while the Sender is active, with the exception of key_version that may change in an SDP
transport file when a protocol supporting in-band dynamic key versions is used.

• A Receiver in an NMOS environment shall communicate the privacy encryption
parameters using the privacy extended NMOS transport parameters. The privacy
encryption parameters protocol, mode, iv, key_generator, key_version, key_id,
ecdh_sender_public_key, ecdh_receiver_public_key and ecdh_curve shall all be
provided by a Receiver using the NMOS mechanism. The privacy encryption parameters
provided by a Receiver in the NMOS transport parameters shall not change while the
Receiver is active, with the exception of key_version that may change in an SDP
transport file when a protocol supporting in-band dynamic key versions is used.

 14 VSF TR-10-13

• When using redundancy, as in ST 2022-7, the legs shall use the same privacy encryption
parameters.

• A Controller in an NMOS environment shall provide the privacy encryption parameters
used by a Sender to a number of Receivers using the SDP transport file or NMOS
transports parameters mechanisms.

For transport protocols that are not using an SDP transport file:

• A Sender/Receiver shall communicate the privacy encryption parameters using the
privacy extended NMOS transport parameters. The privacy encryption parameters
protocol, mode, iv, key_generator, key_version, key_id, ecdh_sender_public_key,
ecdh_receiver_public_key and ecdh_curve shall all be provided using the NMOS
mechanism. The privacy encryption parameters provided by a Sender/Receiver in the
NMOS transport parameters shall not change while the Sender/Receiver is active, with
the exception of key_version that may change in an SDP transport file when a protocol
supporting in-band dynamic key versions is used.

• When using redundancy, as in ST 2022-7, the legs shall use the same privacy encryption
parameters.

• A Controller in an NMOS environment shall provide the privacy encryption parameters
used by a Sender to a number of Receivers using the NMOS transports parameters
mechanism.

The privacy attribute of an SDP transport file shall be formatted as a follow with a semicolon
and an optional space separating the parameters and a CRLF to terminate the attribute line. There
shall be no semicolon after the last parameter. The placeholders <protocol>, <mode>, <iv>,
<key_generator>, <key_version> and <key_id> shall be replaced with the actual value of the
parameter, with Octet String represented in hexadecimal notation without spaces.

a=privacy:protocol=<protocol>; mode=<mode>; iv=<iv>; key_generator=<key_generator>;

 key_version=<key_version>; key_id=<key_id> CRLF

• protocol: this parameter defines the privacy encryption protocol adaptation being used. It

represents various aspects of the privacy encrypted stream such as the transport protocol,
the encryption behavior (packet layout, encrypted sections, and authenticated sections),
the support for in-band dynamic key versions, etc. It shall be a string associated with a
protocol as documented in one of the protocol adaptations.

 15 VSF TR-10-13

The protocol value shall not change while a Sender/Receiver is active. A
Sender/Receiver shall become inactive in order to change the protocol.

The NULL protocol may be used in NMOS transport parameters to indicate that privacy
encryption is not available / disabled. It shall not be possible through NMOS transport
parameters to disable encryption on a Sender/Receiver that is configured to perform
privacy encryption. A Sender/Receiver that does not perform privacy encryption may
indicate NULL as the actual protocol adaptation in its NMOS transport parameters.

The NULL protocol shall not be used in an SDP transport file. Instead, the privacy
attribute shall be omitted.

A Sender/Receiver may support multiple protocols. It may be configured to use one of
such protocols through the NMOS transport parameters or through a vendor-specific
mechanism. Only a vendor-specific configuration mechanism shall be able to configure a
Sender/Receiver to disable privacy encryption.

• mode: this parameter defines the encryption, authentication and key derivation functions
being used. It represents various aspects of the privacy encrypted stream such as the use
of a 128 or 256 bit key, the use of authentication, the use of peer-to-peer ECDH in key
derivation, etc. It shall be a string associated with a mode as documented in one of the
protocol adaptations.

Senders and Receivers shall support operating in AES-128-CTR mode. The mode of
operation shall not change while a Sender or Receiver is active. A Sender or Receiver
shall become inactive in order to change the mode of operation.

The NULL mode may be used in NMOS transport parameters to indicate that privacy
encryption is not available / disabled. It shall not be possible to disable encryption on a
Sender/Receiver that is configured to perform privacy encryption. A Sender/Receiver that
does not perform privacy encryption may indicate NULL as the actual mode of operation
in its NMOS transport parameters.

The NULL mode shall not be used in an SDP transport file. Instead, the privacy attribute
shall be omitted.

A Sender/Receiver may support multiple modes. It may be configured to use one of such
modes through the NMOS transport parameters or a vendor-specific mechanism. Only a
vendor-specific configuration mechanism shall be able to configure a Sender/Receiver to
disable privacy encryption.

• iv: this parameter defines the initial vector being used by the Sender at activation. It shall
be a 64-bit Octet String in binary form.

 16 VSF TR-10-13

The iv value should be randomly chosen for each stream and should be unique among all
the streams encrypted by a Sender Device. Its value shall not change while the Sender is
active. A Sender shall become inactive in order to change the iv value.

• key_generator: this parameter defines the key generator being used by the Sender at
activation. It shall be a 128-bit Octet String in binary form.

The key_generator value shall be randomly chosen by the Sender Device at boot / reset /
init time. It may be shared by a number of streams / sub-streams encrypted by a Sender
Device. Its value shall not change until the next boot / reset / init of the Sender Device.

• key_version: this parameter defines the key version being used by the Sender at
activation. It shall be a 32-bit Octet String in binary form.

When a Sender becomes active, it selects a key_version value that shall remain constant
during the activation of the Sender unless a protocol supporting in-band dynamic key
versions is used, in which case the selected key_version value may increment by 1
modulo 232 to change the associated privacy_key during the activation.

The key_version value provided by a Sender in an SDP transport file and/or NMOS
transport parameters shall not change while the Sender is active. If a protocol supporting
in-band dynamic key versions is used, the key_version value provided in the SDP
transport file and/or NMOS transport parameters shall correspond to the value at the
activation of the Sender.

The key_version value transmitted in-band along with the ciphered content may change
while a Sender is active.

The key_version may be shared by a number of streams / sub-streams encrypted by a
Sender Device.

• key_id: this parameter defines the key identifier being used by the Sender at activation. It
shall be a 64-bit Octet String in binary form.

The key_id value shall be associated with a Pre-Shared Key (PSK). A Sender shall
provide the key_id of the PSK from which derives the stream's encryption key. A
Receiver shall select a PSK from the key_id to derive the stream's decryption key. Its
value shall not change while the Sender is active. A Sender shall become inactive in order
to change the key_id.

The key_id value associated with a Pre-Shared Key (PSK) shall be globally unique
among all the Sender/Receiver Devices of a network under a given administrative
authority. It is an administrative responsibility to ensure such uniqueness. Administrators

 17 VSF TR-10-13

may maintain a central registry of the PSK and their associated key_id or other
techniques to comply with the globally unique requirement.

A Receiver may allow the use of multiple key_id values. It may be configured to use one
such key_id value through the SDP transport file and/or NMOS transport parameters.
The constraints associated with the ext_privacy_key_id parameter of the Receiver should
list all the key_id values allowed by the Receiver.

A Sender shall use a single key_id value. The constraints associated with the
ext_privacy_key_id NMOS transport parameter of the Sender shall list the one key_id
value associated with the Sender.

The NMOS privacy transport parameters shall be named according to the NMOS rules and start
with the prefix "ext_". Each transport parameter shall have an associated constraint describing
the values supported/allowed for the parameter. A constraint allowing a single value shall
describe a read-only parameter that can only be programmed to the constraint value. A
Sender/Receiver shall not allow a Controller to set a transport parameter to a value that is not
allowed by the associated parameter constraints.

The actual value of the NMOS transport parameters and constraints shall be a string, with Octet
String represented in hexadecimal notation without spaces.

Transport Parameter Name Type SDP Name Sender Receiver

ext_privacy_protocol string protocol r/w r/w

ext_privacy_mode string mode r/w r/w

ext_privacy_iv string iv read-only r/w

ext_privacy_key_generator string key_generator read-only r/w

ext_privacy_key_version string key_version read-only r/w

ext_privacy_key_id string key_id read-only r/w

ext_privacy_ecdh_sender_public_key string - read-only r/w

ext_privacy_ecdh_receiver_public_key string - r/w read-only

ext_privacy_ecdh_curve string - r/w r/w

Table 1- Transport Parameters

A device supporting the Perfect Forward Secrecy ECDH mode shall implement the
ext_privacy_ecdh_curve, ext_privacy_ecdh_sender_public_key and

 18 VSF TR-10-13

ext_privacy_ecdh_receiver_public_key NMOS transport parameters. This mode of operations
should be used only for peer-to-peer Sender, Receiver configurations. The ECDH parameters are
used by the PEP key derivation function when the mode of operation enables ECDH (having an
"ECDH_" prefix) as indicated by the ext_privacy_mode NMOS transport parameter and the
"a=privacy" mode attribute of the SDP transport file.

• ext_privacy_ecdh_curve: this parameter defines the elliptic curve being used by the
Sender/Receiver. It shall be a string associated with an ecdh_curve among the following:
“secp256r1”, “25519”, “448”, “secp521r1” or "NULL" if the Perfect Forward Secrecy
ECDH mode is not available / supported.

The constraint on ext_privacy_ecdh_curve shall indicate which elliptic curves are
supported by the Sender. A constraint may indicate that no value is supported (empty
enum) or that only the "NULL" value is supported to express that the Perfect Forward
Secrecy ECDH mode is not supported by the Sender or Receiver. When Perfect Forward
Secrecy is not supported there shall be no mode of operation with an "ECDH_" prefix
listed in the constraints on ext_privacy_mode.

The ext_privacy_ecdh_curve parameter shall not change while a Sender or Receiver is
active. A Sender or Receiver shall become inactive in order to change the ecdh_curve.

• ext_privacy_ecdh_sender_public_key: this parameter defines the ECDH public key of
the Sender. It shall be an Octet String in binary form of the corresponding number of bits
for the actual elliptic curve. The 00 Octet String should be used when the ecdh_curve is
"NULL" or the parameter is not yet defined on a Receiver. A Sender shall generate a new
ext_privacy_ecdh_sender_public_key value randomly at initialization, when it becomes
inactive either implicitly through some internal process or explicitly through an external
deactivation request. The generation of the public key shall depend only on the
ecdh_curve being used.

Note: A Sender may become inactive automatically without an
explicit request from a Controller.

For curves secp256r1 and secp521r1 the public key shall be an Octet String in
uncompressed form as per SEC 1, Version 2.0, Section 2.3.3 (prefix byte) while for
curves 25519 or 448 the public key shall be a plain Octet String in uncompressed form
(no prefix byte).

Note: The standard Montgomery X-coordinate encoding used for curves
25519 and 448 uses a little-endian ordering of the bytes. To keep
consistency among the curves the bytes of such encoding are
reversed in ext_privacy_ecdh_sender_public_key and

 19 VSF TR-10-13

ext_privacy_ecdh_receiver_public_key which are in big-endian
format.

For a Sender, the constraints on the transport parameter
ext_privacy_ecdh_sender_public_key shall allow only one value, indicating that it
cannot be changed by a Controller. The value shall correspond to the ECDH public key
of the Sender that a Controller shall provide to the peer Receiver. A constraint may
indicate that no value is supported (empty enum), or that only the "00" value is
supported, to express that the Perfect Forward Secrecy ECDH mode is not supported by
the Sender.

For a Receiver, the constraints on the transport parameter
ext_privacy_ecdh_sender_public_key should allow any Octet String of the
corresponding number of bits for the actual elliptic curve. A constraint may indicate that
no value is supported (empty enum) or that only the 00 value is supported to express that
the Perfect Forward Secrecy ECDH mode is not supported by the Receiver.

The ext_privacy_ecdh_sender_public_key parameter shall not change while a Sender
or Receiver is active. A Sender or Receiver shall become inactive in order to change the
ext_privacy_ecdh_sender_public_key.

• ext_privacy_ecdh_receiver_public_key: this parameter defines the ECDH public key of
the Receiver. It shall be an Octet String in binary form of the corresponding number of
bits for the actual elliptic curve. The 00 Octet String should be used when the
ecdh_curve is "NULL", or the parameter is not yet defined on a Sender. A Receiver
shall generate a new ext_privacy_ecdh_receiver_public_key value randomly at
initialization, when it becomes inactive either implicitly through some internal process, or
explicitly through an external deactivation request. The generation of the public key shall
depend only on the ecdh_curve being used.

For curves secp256r1 and secp521r1 the public key shall be an Octet String in
uncompressed form as per SEC 1, Version 2.0, Section 2.3.3 (prefix byte), while for
curves 25519 or 448, the public key shall be a plain Octet String in uncompressed form
(no prefix byte).

Note: The standard Montgomery X-coordinate encoding used for curves
25519 and 448 uses a little-endian ordering of the bytes. To keep
consistency among the curves, the bytes of such encoding are
reversed in ext_privacy_ecdh_sender_public_key and
ext_privacy_ecdh_receiver_public_key, which are in big-endian
format.

For a Receiver, the constraints on the transport parameter
ext_privacy_ecdh_receiver_public_key shall allow only one value, indicating that it

 20 VSF TR-10-13

cannot be changed by a Controller. The value shall correspond to the ECDH public key
of the Receiver that a Controller shall provide to the peer Sender. A constraint may
indicate that no value is supported (empty enum), or that only the 00 value is supported,
to express that the Perfect Forward Secrecy ECDH mode is not supported by the
Receiver.

For a Sender, the constraints on the transport parameter
ext_privacy_ecdh_receiver_public_key should allow any Octet String of the
corresponding number of bits for the actual elliptic curve. A constraint may indicate that
no value is supported (empty enum), or that only the 00 value is supported, to express
that the Perfect Forward Secrecy ECDH mode is not supported by the Sender.

The ext_privacy_ecdh_receiver_public_key parameter shall not change while a Sender
or Receiver is active. A Sender or Receiver shall become inactive in order to change the
ext_privacy_ecdh_sender_public_key.

A Controller participating in a Privacy Perfect Forward Secrecy ECDH exchange should
exchange the ext_privacy_ecdh_sender_public_key transport parameter of a Sender and of
ext_privacy_ecdh_receiver_public_key of a Receiver prior to the activation of the
Sender/Receiver. The ext_privacy_ecdh_curve value of transport parameters may affect the
generation of those values. A controller should read the ext_privacy_ecdh_sender_public_key
transport parameter of a Sender and of ext_privacy_ecdh_receiver_public_key of a Receiver
after completing the programming of the ext_privacy_ecdh_curve transport parameter and
explicitly deactivating the Sender/Receiver.

Sender Receiveradmin
PSKi admin

PSKi

NMOS
Transport

Parameters

SDP
Transport File

NMOS
Transport

Parameters

SDP
Transport File

ctr, ciphered media
key_version (optional)

ctr, ciphered media
key_version (optional)

protocol, mode

iv, key_generator, key_version, key_id

ecdh_sender_public_key

ecdh_receiver_public_key

ecdh_curve

protocol, mode, iv, key_generator, key_version, key_id

protocol, mode

iv, key_generator, key_version, key_id

ecdh_sender_public_key

ecdh_receiver_public_key

ecdh_curve

protocol, mode, iv, key_generator, key_version, key_id

controller

controller

 21 VSF TR-10-13

Figure 2 - SDP and NMOS parameters relationship

14 Multiplexed streams and Bidirectional streams
The iv' parameter, which is used by the Privacy Cipher to encrypt/decrypt a stream/sub-stream,
derives from iv and shall be equal to the iv value (see Figure 3) unless multiplexed sub-streams
(see Figure 4) or bidirectional sub-streams are used (see Figure 5). The iv' value should be
unique among all the streams and sub-streams encrypted by a Sender/Receiver Device. Its value
shall not change while the Sender/Receiver is active. A Sender/Receiver shall become inactive in
order to change the iv' value of a stream or sub-stream.

The actual value of the quartet (iv', key_generator, key_version, key_id) shall be unique
among all the streams and sub-streams encrypted by the Sender/Receiver Device. A
Sender/Receiver Device may enforce this rule statically by ensuring that the iv' values are unique
among all the streams and sub-streams encrypted by the device.

For multiplexed streams where each sub-stream is encrypted independently, the effective iv'
value for a given sub-stream shall be obtained by adding modulo 264, the sub-stream id in the
range [0, 1023], with the base iv value (see Figure 4). The sub-stream id is a concept understood
by the Sender and Receiver of such a multiplexed stream and is adaptation specific. This
Technical Recommendation requires only that such sub-streams be allocated an identifier in the
range [0, 1023] thus restricting such a multiplexed stream to a maximum of 1024 sub-streams.

For bidirectional and optionally multiplexed streams, the sub-streams in each direction shall be
encrypted independently, and the effective iv' value for a given sub-stream shall be obtained by
adding modulo 264, the sub-stream id in the range [0, 1023] with the base iv value (see Figure 5).
The sub-stream id shall be an even number for the Sender to Receiver direction and an odd
number for the Receiver to Sender direction. The sub-stream id is a concept understood by the
Sender and Receiver of such a bidirectional stream and is adaptation specific. This Technical
Recommendation requires only that such sub-streams be allocated an identifier in the range [0,
1023] with proper odd/even allocation thus restricting such a bidirectional stream to a maximum
of 512 bidirectional sub-streams.

 22 VSF TR-10-13

Figure 3 - Single unidirectional stream

Figure 4 - Multiplexed unidirectional streams

Sender Receiver

IPMX stream
iv’, ctr

PEP PEP

Sender Receiver

IPMX streamiv’0, ctr0
iv’1, ctr1
iv’2, ctr2

PEP PEP

 23 VSF TR-10-13

Figure 5 - Multiplexed bidirectional streams

15 Privacy Cipher
The privacy cipher shall be based on the AES-128 or AES-256 block cipher operating in CTR or
GCM mode (NIST.FIPS.197, NIST.SP.800-38a, NIST.SP.800-38d)

cipher_contenti = CIPHkey(iv'_ctr) XOR plain_contenti

• The key shall be 128 bits for AES-128 and 256 bits for AES-256. It shall be generated
from a Pre-Shared Key (PSK) and other values obtained from separate channels. It is an
Octet String in binary form.

• The iv'_ctr shall be a 128-bit Octet String in binary form. It shall be generated from a
number of associated values depending on the transport protocol adaptation. Usually,
such values comprise an initial vector iv' and a sequence counter ctr. The iv'_ctr value
shall not be used more than once with a given key.

• cipher_contenti is a 128-bit Octet String of binary data from of a stream or sub-stream

• plain_contenti is a 128-bit Octet String of binary data from of a stream or sub-stream

The effective value of iv'_ctr used by the CIPHkey function may differ according to the transport
protocol adaptation.

Note: Depending on the transport protocol adaptation, the size and
combination of iv' and ctr values into iv'_ctr may be slightly
different than what is described in this Technical Recommendation for

Sender Receiver

IPMX streamiv’0, ctr0

iv’1, ctr1
iv’2, ctr2

iv’3, ctr3
iv’4, ctr4

PEP PEP

 24 VSF TR-10-13

the RTP transport protocol, while still being compliant with the AES
cipher in CTR/GCM mode specification. This Technical Recommendation
assumes full control over the encryption process when using the RTP
transport protocol, while still allowing a transport protocol specific
encryption process based on the privacy_key defined in this document.

The sections of the stream that are encrypted and/or authenticated are protocol and adaptation
specific.

Modes of operation using a message authentication code (MAC) of some sections of the stream,
excluding GCM, shall operate in a mac-then-encrypt scheme and store the encrypted MAC as the
last N bytes of the encrypted payload (the MAC is encrypted along with the payload). The mode
of operation shall dictate the size (N), in bytes, of the MAC and the use of AAD. The MAC shall
be calculated over the payload data and optionally it may also be calculated over some additional
authenticated data (AAD). It then applies to the payload data that is to be encrypted and
optionally to some data that is not to be encrypted.

The GCM mode operates in an encrypt-then-mac scheme and stores the MAC in clear as the last
N bytes of the encrypted payload (the MAC is not encrypted). The mode of operation shall
dictate the size (N), in bytes, of the MAC and the use of AAD. The MAC shall be calculated
over the encrypted payload data and optionally it may also be calculated over some additional
authenticated data (AAD). It then applies to the encrypted payload data and optionally to some
data that is not to be encrypted.

The truncated MAC shall be comprised of the most significant bit of the MAC, as required by
NIST SP 800-38b and NIST SP 800-38d.

16 Sender / Receiver Model (Informative)
Figure 6 and Figure 7 describe a model of a Sender and a Receiver implementing the Privacy
Encryption Protocol.

Without using dynamic changes of the key_version:

• This is the simplest configuration. The PEP parameters are static for the duration of
active state of a Sender/Receiver and completely under the control of the Sender Device.

• One or many sub-streams may be encrypted/decrypted in parallel, possibly using the
same key. Each sub-stream has a dedicated iv' and ctr parameter.

• There are as many KDFe and KDFd modules as there are distinct keys.
• As the key_version is not allowed to change dynamically there is only one key_version

state shared by all the KDFe and KDFd modules.
• The Sender Device possibly shares the same key_id, key_version and key_generator

with multiple Senders.

 25 VSF TR-10-13

• In this configuration the Sender and Receiver are deactivated to change the PEP
parameters. It is not possible to change the encryption key without stopping the Sender
and Receiver.

Using dynamic changes of the key_version:

• This is the most flexible configuration. The PEP parameters, except key_version, are
static for the duration of active state of a Sender/Receiver and completely under the
control of the Sender Device. The key_version is dynamic, and is communicated in-band
along with the ciphered content. It is completely under the control of the device
performing the encryption (Sender or Receiver).

• In this configuration the KDFd modules are not connected to the key_version but are
connected to the dynamic_key_version instead.

• One or many sub-streams may be encrypted/decrypted in parallel, possibly using the
same key. Each sub-stream has a dedicated iv' and ctr parameter.

• There are as many KDFe modules as there are distinct keys.
• There are as many KDFd modules as there are sub-streams. A number of sub-streams

could possibly be using the same key, but as the decryption module does not have a priori
knowledge of such information, it assumes the worst case of all sub-streams using a
different key.

• As the key_version is allowed to change dynamically there are as many key_version
states as there are KDFe modules. Note that the number of KDFe modules of a Sender
and Receiver will differ and is totally under the control of the Sender and Receiver.

• There are as many dynamic_key_version states transmitted in-band as there are sub-
streams encrypted in parallel, each receiving the key_version parameter associated with
the key used for encryption.

• There are as many dynamic_key_version states received in-band as there are sub-streams
decrypted in parallel, each receiving a dynamic key_version parameter associated with
the key used for decryption.

• The Sender Device possibly shares the same key_id, key_version and key_generator
with multiple Senders.

• The Receiver Device possibly shares the same key_id, key_version and key_generator
with multiple Receivers.

• In this configuration the Sender and Receiver are deactivated to change all the PEP
parameters but key_version. It is possible to change the encryption/decryption key
without stopping the Sender and Receiver using dynamic key_version.

 26 VSF TR-10-13

Figure 6 - Sender model

Figure 7 - Receiver model

key_generator

key_idconfiguration

random

random

inactive or dynamic

ivrandom, unique

in-band

all PSK

configuration

Sender

PSK

key_pfs

in-band

KDFeKDFe EE

KDFdKDFd DD

iv'

ctr

iv'

ctr

ctr

iv'iv'

ctr

dynamic_key_versiondynamic_key_version

dynamic_key_versiondynamic_key_version

key_versionkey_version

sub-streams

Receiver

KDFe E

KDFd D

iv'

ctr

ctr

iv'

dynamic_key_version

dynamic_key_version

key_version

key_generator

key_version

key_idSDP / NMOS

SDP /NMOS

SDP / NMOS
or

random inactive or dynamic

ivSDP / NMOS

dynamic_key_versionin-band

all PSK

configuration

iv'

ctr

PSK

EKDFe

key_pfs

KDFd

iv'

ctr

D

dynamic_key_versionin-band

sub-streams

 27 VSF TR-10-13

17 Key distribution
A set of PSK values shall be programmed in both Sender and Receiver Devices by means out of
the scope of this Technical Recommendation. Only devices sharing the same secret PSK value
and size shall be allowed to successfully exchange privacy encrypted media content when the
ECDH mode is not used. Only devices sharing the same secret PSK value and size and ECDH
secret value shall be allowed to successfully exchange privacy encrypted media content when the
ECDH mode is used.

A Pre-Shared Key has a value (the secret itself) and a size (the number of bits of the associated
PSK). This Technical Recommendation describes the requirements for PSK of 128, 256 and 512
bits. The programming of the PSK in the devices shall target one such size. The default target
size shall be 128 bits and shall be supported by all devices. The programming interface should
clearly indicate the target number of bits for PSK of 256 and 512 bits. If a device does not
support PSK of 256 or 512 bits it shall clearly indicate to an administrator using such
programming interface that such PSK target sizes are not supported by the device.

Note: When an administrator associates a secret key of value abcd with a
Sender it also associates a size, for example 128 bits. When sharing
such abcd secret key with some Receivers, the administrator must not
only provide the abcd value but also the associated size to the
Receivers.

A given PSK is associated with a unique key_id. For security purposes there should be, at most,
one PSK value associated with a given key_id. A cryptographically secure random number
generator should be used to generate a PSK value and provide a high level of confidence in the
uniqueness of the PSK value associated with a given key_id. A deployment with extreme
security requirements may further ensure that no one PSK value is associated with more than
one key_id.

A number of PSK may be programmed into a Sender Device, each key having an associated
key_id and an associated set of streams (Senders). In its simplest configuration a Sender Device
uses one PSK for all the streams it transmits over the network. In a complex environment, a
Sender Device may have a PSK associated with a specific set of streams (Senders) in order to
control the accessibility of such streams by Receivers.

A number of PSK may be programmed into a Receiver Device, each key having an associated
key_id. Programming a PSK in a Receiver Device implies allowing such Receiver Device to
access the content of the streams encrypted from such PSK.

It shall be assumed that once a PSK associated with a given key_id is given to a Receiver
Device, it is able to access a stream associated with this PSK forever. To prevent further access
to a stream by such Receiver Device, the Sender Device shall stop using such key_id.

 28 VSF TR-10-13

The SDP transport file and/or NMOS transport parameters provide the key_id associated with
the stream the Receiver is subscribing, such that the Receiver can look up the proper PSK for
accessing the content of the stream.

key_id
|

Stream ---- SDP Transport File ---- Sender
NMOS Transport Parameters

18.1 Key distribution through HTTPS (informative)

Figure 8 - Configuring PSKs using HTTPS Server certificates

DevicePC
PSK of KeyId = X HTTPS

ServerCert

TrustedRootCA

Secure
Storage
PSKkeyId

A user is either a the device owner or a
program acting on behalf of the device
owner.

User credentials

The configuration of the device shall be protected
by administrative credentials

KeyId Senders PSK
1 AV ************
2 Data ************
3 AVSec ************

KeyId PSK
1 ************
3 ************

Sender device Receiver device
Size
128
128
256

Size
128
256

 29 VSF TR-10-13

Figure 9 - Configuring PSKs using HTTPS Client-Server certificates

18 Safety
The privacy encryption protocol uses various channels for the transport of key material. For
instance, the Pre-Shared Key (PSK) is programmed into the device by means out of the scope of
this Technical Recommendation. It is expected to be performed in a secure way through a device
proprietary configuration interface. For example, such interface may be using a secure
connection such as HTTPS as illustrated in Figure 8 and Figure 9, with proper verification of the
certificates and using administrator credentials.

The SDP transport file and/or the NMOS transport parameters provide the key_id, iv and
key_generator values along with the key_version associated with the key_generator. All these
values are not secret values but it is expected that a secure deployment of Sender and Receiver
Devices would use HTTPS to exchange NMOS messages and SDP transport files, adding an
extra layer of security over the privacy attributes of the SDP transport file and NMOS transport
parameters. Further security may be achieved using IS-10 to protect the exchange of SDP
transport file and NMOS transport parameters. The value of the key_generator attribute of the
SDP transport file and/or NMOS transport parameters is subject to an initial random shuffle and
will change at every boot / reset / init of the Sender Device.

The in-band dynamic key_version received along with the ciphered content stream, may be
protected using a privacy encryption protocol and mode of operation providing authentication of
the key_version value.

DevicePC
PSK of KeyId = X HTTPS

ServerCert

TrustedRootCA

Secure
Storage
PSKkeyId

A user is either a the device owner or a
program acting on behalf of the device
owner.

ClientCert

User credentials

The configuration of the device could also be
protected with administrative credentials

KeyId Senders PSK
1 AV ************
2 Data ************
3 AVSec ************

KeyId PSK
1 ************
3 ************

Sender device Receiver device

TrustedRootCA

Size
128
128
256

Size
128
256

 30 VSF TR-10-13

When an in-band dynamic key_version is received along with the ciphered content stream, a
Sender/Receiver should verify that it is making forward progress or has not changed. The
incoming key_version value shall be larger or equal to the last key_version value received from
the ciphered content stream, taking into account the 232 wrap around and the monotonic
incremental nature of the value, and that the effective value cannot be farther than 231 units from
the initial or previous one. After a Receiver is subscribed to a media stream, the first
key_version value received along with the ciphered content stream by the subscribed Receiver
or by the Sender cannot be verified for making forward progress.

The in-band dynamic key_version protocol (i.e protocol name ending with _KV) should be used
with a mode of operation providing authentication.

The ctr received along with the ciphered content stream, may be protected using a privacy
encryption protocol and mode of operation providing authentication of the ctr value.

A Sender/Receiver should verify that the ctr value received along with the ciphered content
stream is making forward progress. The incoming ctr value shall be larger to the last ctr value
received from the ciphered content stream, taking into account the 264 wrap around and the
monotonic incremental nature of the value. After a Receiver is subscribed to a media stream, the
first ctr value received along with the ciphered content stream by the subscribed Receiver or by
the Sender cannot be verified for making forward progress. The first ctr value received may not
be 0 as the Receiver may be subscribing to a media stream after the initial packet has been
transmitted. The mechanism used by a Sender to know that a Receiver subscribed to the content
stream is adaptation dependent.

This Technical Recommendation ensures that the AES-CTR mode cipher is used safely,
providing requirements and techniques to guarantee the uniqueness of the key and iv'_ctr values
of the privacy cipher. See the section 15 for more details.

The use of a 64-bit MAC is within the security guarantees of AES-CMAC as per NIST.SP.800-
38b section A.2 “For most applications, a value for Tlen that is at least 64 should provide
sufficient protection against guessing attacks.”

The Perfect Forward Secrecy ECDH mode allows further security for peer-to-peer configurations
where only the associated Sender and Receiver can decrypt the content as the encryption key
derives from both the ECDH, and the privacy encryption protocol schemes. In this mode the
knowledge of the PSK is used to ensure that the peers are legitimate devices. Getting the shared
ECDH secret key is not enough for decrypting the stream. The key_pfs is one of many pieces of
information used for deriving the privacy_key.

 31 VSF TR-10-13

19 Test vectors for key derivation (informative section)
This section provides test vectors for verifying the implementation of the Privacy Encryption
Protocol.

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "ECDH_AES-128-CTR"
"ext_privacy_iv": "a48a7f235b37ebd6"
"ext_privacy_key_generator": "2a4ab04bd61219d37a91abf6f94ab124"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "a7938740"
"ext_privacy_ecdh_sender_public_key":
"04b575bec15a1c92e822a0b71175f7fed4d1f3f1a9518d38a9314e7882bd82b6"
"ext_privacy_ecdh_receiver_public_key":
"50f4cf59ab320e83c802c1fae250086943f9df13c605e843434b10098c630ebc"
"ext_privacy_ecdh_curve": "25519"
Privacy keyId 0001020304050607
Privacy keyGenerator = 2a4ab04bd61219d37a91abf6f94ab124
Privacy keyVersion = a7938740
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
218f8b81501ea437e0bc2c21a8e9af2be7bee3b1c553f9ccaaf40e3dc19374c6
Privacy KEY = dee53f79ac29628644d01783b5b3c0b7

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "ECDH_AES-128-CTR"
"ext_privacy_iv": "6ca953833cba30fb"
"ext_privacy_key_generator": "2edf9023a68fb83c5d1f018d7cd3783e"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "cc2301ed"
"ext_privacy_ecdh_sender_public_key":
"04156ce3d53ba3e196377151b44ed0c7ad97467299a3a16bc6ae581f2369705f3c4dbe4c355
de00fecd20f3ac432aa87c1c5608c5addbef709dc5627063fbc1b99"
"ext_privacy_ecdh_receiver_public_key":
"0437a606a2a808d01f96d74404b5b8bfc85f2eb244c1fcf748e1f60b9b898cc3043cc92d81f
774071e365f67466083551f502616cfdd4590aa0fcb2abfa0aa58bd"
"ext_privacy_ecdh_curve": "secp256r1"
Privacy keyId 0001020304050607
Privacy keyGenerator = 2edf9023a68fb83c5d1f018d7cd3783e
Privacy keyVersion = cc2301ed
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
dcf9d6b750d8c51419127f6e9ef9c91199bb99237d28e4054a6486f190b403d3
Privacy KEY = 12d376fa12f933780b1a68b9ebdb4187

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "ECDH_AES-128-CTR"
"ext_privacy_iv": "58461a11c3fc1337"
"ext_privacy_key_generator": "a7ebcd7bef2b32abc008e1d0d0c777a0"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "5c436e9d"
"ext_privacy_ecdh_sender_public_key":
"0400d4c60c971b147796b35074a2795c82721f00aa5c76e487bcd963d07d5a32ad12f4f4285
426ff563b729b8146558e671a4893f9f7b544a00b7f75d75c22657221f0004e4d41ad92c32c3

 32 VSF TR-10-13

b86421eba93a491339e67bfa22120497e99220625400f9efbe63db77a71f77e95c5efb8dbef9
a1d17a20bd5e7954d55c7ea8000472a9b28debe"
"ext_privacy_ecdh_receiver_public_key":
"04008788c452f0c25a34f25df671af02b35e18f61e8e2f4aed3c275556d9ff38e699f3c963a
f7046d775fcb0019318ad7aa2e5485f91011f0f246e2319d1c5bb497ec700545de08600571f1
6aed75cf2dd230c9db5fac67accc56eb3c6f97e1d49781692ca79524d719f257b02ce96df5d9
062ed7c3a0d7ac26411940b323183f565fe5bea"
"ext_privacy_ecdh_curve": "secp521r1"
Privacy keyId 0001020304050607
Privacy keyGenerator = a7ebcd7bef2b32abc008e1d0d0c777a0
Privacy keyVersion = 5c436e9d
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
015df637be34bb2edc8f493d3cdbb4ba05371b894cf20adf899ad5a1cbbba4c26acaf1342b37
66e5f686b00537d810372fb840b28c4a3587bba07cf12721cff37846
Privacy KEY = 56afadf373fccef80e70a755fe0a1588

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "ECDH_AES-256-CTR"
"ext_privacy_iv": "85cce5edc2dbbf91"
"ext_privacy_key_generator": "a208336568863d5cf6ee704837340d79"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "84f03939"
"ext_privacy_ecdh_sender_public_key":
"062acdfb142ef1944a26b934030f28e5715f0aef6f3d674efc4c3949ed2e3913"
"ext_privacy_ecdh_receiver_public_key":
"07356a625c072988b1cb69369861f0d52cf56c7f80f2cded3c3155d58c2fa44d"
"ext_privacy_ecdh_curve": "25519"
Privacy keyId 0001020304050607
Privacy keyGenerator = a208336568863d5cf6ee704837340d79
Privacy keyVersion = 84f03939
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
79a44729b1f4d9f52a4e210a5b4e776de4f511837798b88beafd5aaa41eb0700
Privacy KEY =
f78d42babb85119405b13bb1199a80bdd5557cc64a596d97abe9bf945079d81a

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "ECDH_AES-256-CTR"
"ext_privacy_iv": "d03c3806f952a5c0"
"ext_privacy_key_generator": "51fa624b4c62a2125e45424c2f185cb9"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "2b7a8223"
"ext_privacy_ecdh_sender_public_key":
"043634e9782c0ea61112ca7d5907a99fa942e1f1ea080591558433d39a39a30cba478178347
03e8bd9918e39fc0704d102d277f28856931844be4dc46412c1a8fd"
"ext_privacy_ecdh_receiver_public_key":
"045ec33bda2ae2feea2931de5bc134db4d40635f85d9a29d3005f86ceac67b07db7bafadbbb
b7f40e9812518a909db3f77e0168fd73cad5ae903f467f0a4b18112"
"ext_privacy_ecdh_curve": "secp256r1"
Privacy keyId 0001020304050607
Privacy keyGenerator = 51fa624b4c62a2125e45424c2f185cb9
Privacy keyVersion = 2b7a8223
Privacy PSK = 000102030405060708090a0b0c0d0e0f

 33 VSF TR-10-13

Privacy PFS =
3e1e0e9836bd01b38a9f18fac02da9d5a545f1ca8149f076917d6f3e3a8b94eb
Privacy KEY =
a3ba0f316f10fb6866bbeb3d6841b346505a1c1f5ec3e36c626721637c0c5aaa

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "ECDH_AES-256-CTR"
"ext_privacy_iv": "b50bf96330c3a250"
"ext_privacy_key_generator": "8623b4b1e6fa7067be1f5952ad6299b8"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "2af1988d"
"ext_privacy_ecdh_sender_public_key":
"040044e3343f79a69672c5b6618abe1b0971fab4726015ad0802435519fae84998a4c337865
f734d9acca251e23b5508987afdfeb22c641a4e533707ea136d1e543df000fb33412a195894c
75298aa36152a007d87df36dd3269dd74d328416323c294b79bde17752732fd086f34ce3d2b4
1c9563f55646a86b4d7d2b12f110048681a3bee"
"ext_privacy_ecdh_receiver_public_key":
"040023d3cfca8624e5c26ef74d523a5cc0a932dad292b6bf6c0efebab0328ef823f6d3a5192
c158cdb0bd637146110021dbc68e8ff54b1f73dc9471e0c78de3bc95a7600bc2d28700a228a5
93c3e38368835d7bd5da0a148e6bf28c18d6a6559b35c59a1fdadd67f3baf6b3561a5af48365
dc4c28a8432ab48304d2ffdc25a0d567775636c"
"ext_privacy_ecdh_curve": "secp521r1"
Privacy keyId 0001020304050607
Privacy keyGenerator = 8623b4b1e6fa7067be1f5952ad6299b8
Privacy keyVersion = 2af1988d
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
00c25350af2ccf296cd60e055b8d70c66a40db98eccb179103c0208700df96ba41d144abd187
5128824a659ae133e394ace2d3e898d95f8f895e96e3a4593a570cf4
Privacy KEY =
3b99a7d6eca76f53600084aec2ce920c5a73391b650b95fc285d00b6286e28d9

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "AES-128-CTR"
"ext_privacy_iv": "f86c85e76cc45e50"
"ext_privacy_key_generator": "52bbbea2b2cdc7ddbb18c23becd3c753"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "007c84b5"
"ext_privacy_ecdh_sender_public_key":
"033a90030205226c28b5da20aef1519c7df0aa28980bfbbf506e5063729955f8"
"ext_privacy_ecdh_receiver_public_key": "00"
"ext_privacy_ecdh_curve": "25519"
Privacy keyId 0001020304050607
Privacy keyGenerator = 52bbbea2b2cdc7ddbb18c23becd3c753
Privacy keyVersion = 007c84b5
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
Privacy KEY = 650132d60b2700cd2aa3e25f24aa8980

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "AES-256-CTR"
"ext_privacy_iv": "f86c85e76cc45e50"
"ext_privacy_key_generator": "52bbbea2b2cdc7ddbb18c23becd3c753"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "007c84b5"

 34 VSF TR-10-13

"ext_privacy_ecdh_sender_public_key":
"1ae3c42e4280f5080b7f6ffa01a56d2bbb71c63ede9f718f31f2f92dabacf67b"
"ext_privacy_ecdh_receiver_public_key": "00"
"ext_privacy_ecdh_curve": "25519"
Privacy keyId 0001020304050607
Privacy keyGenerator = 52bbbea2b2cdc7ddbb18c23becd3c753
Privacy keyVersion = 007c84b5
Privacy PSK = 000102030405060708090a0b0c0d0e0f
Privacy PFS =
Privacy KEY =
650132d60b2700cd2aa3e25f24aa8980cafd1d993e2e2a36640b7795579c089a

"ext_privacy_protocol": "RTP",
"ext_privacy_mode": "AES-256-CTR"
"ext_privacy_iv": "aa68f9206ddee5e9"
"ext_privacy_key_generator": "f99067d1f5f72363d3b0e009ab34c36b"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "7251c65d"
"ext_privacy_ecdh_sender_public_key":
"3af38bbbab6dc1e60b1d82680416caf2645091f7e1d191e98d434bad162fedd6"
"ext_privacy_ecdh_receiver_public_key": "00"
"ext_privacy_ecdh_curve": "25519"
Privacy keyId 0001020304050607
Privacy keyGenerator = f99067d1f5f72363d3b0e009ab34c36b
Privacy keyVersion = 7251c65d
Privacy PSK =
000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f
Privacy PFS =
Privacy KEY =
e9ceff8c8aa6aa6680c1928a5427fb71351ce3c9c507c92a9fba3bcbd65681f3

"ext_privacy_protocol": "RTP"
"ext_privacy_mode": "AES-256-CTR"
"ext_privacy_iv": "7eee1d6607035871"
"ext_privacy_key_generator": "1927a9d6914eb5579edd30712a081f84"
"ext_privacy_key_id": "0001020304050607"
"ext_privacy_key_version": "c5f4a28d"
"ext_privacy_ecdh_sender_public_key":
"044b4b973dd122d3e2571e568f9fa594009ece14724acec2802e36323d494336"
"ext_privacy_ecdh_receiver_public_key": "00"
"ext_privacy_ecdh_curve": "25519"
Privacy keyId 0001020304050607
Privacy keyGenerator = 1927a9d6914eb5579edd30712a081f84
Privacy keyVersion = c5f4a28d
Privacy PSK =
000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f000102030405
060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f
Privacy PFS =
Privacy KEY =
2e4edd15087fa6d4fef2f5c16ee0d474fec93823c12099a47d00bd5cd54d87e6

Table 2 - Test Vectors

 35 VSF TR-10-13

20 RTP transport protocol adaptations
The RTP protocol adaptation shall be supported by all implementations of the Privacy
Encryption Protocol using the RTP protocol. The RTP_KV protocol adaptation is optional.

For RTP, this Technical Recommendation assumes full control over the encryption process.
There is no encryption/authentication of the RTCP messages.

Note: This Technical Recommendation does not describe privacy encryption of RTCP messages.

The protocol parameter shall be RTP or RTP_KV.

• A Sender / Receiver shall support the RTP protocol.

• A Sender using the RTP_KV protocol shall transmit the key_version along with the
ciphered content in the dynamic_key_version field of the Full RTP Extension Header.
When using the RTP protocol, the dynamic_key_version field of the Full RTP Extension
Header shall be set to 0 unless the extension header field is being used for other purposes
outside the scope of this Technical Recommendation. A Receiver using the RTP protocol
shall ignore the dynamic_key_version field of the Full RTP Extension Header. When
using the RTP_KV protocol the Receiver shall monitor it.

The mode parameter shall be one of AES-128-CTR, AES-256-CTR, AES-128-CTR_CMAC-64,
AES-256-CTR_CMAC-64, AES-128-CTR_CMAC-64-AAD, AES-256-CTR_CMAC-64-AAD,
ECDH_AES-128-CTR, ECDH_AES-256-CTR, ECDH_AES-128-CTR_CMAC-64,
ECDH_AES-256-CTR_CMAC-64, ECDH_AES-128-CTR_CMAC-64-AAD, ECDH_AES-256-
CTR_CMAC-64-AAD.

• A Sender / Receiver shall support the AES-128-CTR mode. Support for all other modes
is optional. For modes of operations with authentication, a 64-bit truncated MAC shall be
supported. The CMAC function used for authentication shall use the privacy cipher key.
When the key is 128 bits the CMAC function shall use the AES-128 block cipher. When
the key is 256 bits the CMAC function shall use the AES-256 block cipher.

Note: The modes AES-128-CTR_CMAC-64 and AES-256-CTR_CMAC-64 are similar
in their structure to the CCM mode specified in NIST SP 800-38c with
the AES-CBC-MAC function replaced by the more robust AES-CMAC
function.

The key shall correspond to the privacy_key defined in the Privacy Key Derivation section.

The iv'_ctr value shall correspond to iv' || ctr. The iv' value shall be a 64-bit Octet String in
binary form. It shall derive from the iv parameter of the stream associated SDP transport file
and/or NMOS transport parameters. The iv' value shall correspond to the base iv value for a

 36 VSF TR-10-13

stand-alone unidirectional stream or the sum of the base iv and a sub-stream index in the range
[0, 1023] for a multiplexed and/or bidirectional stream.

The ctr value shall be a 64-bit Octet String in binary form. It shall be transmitted by the Sender
along with the ciphered content. This 64-bit value shall be transmitted in the ctr_high and
ctr_low fields of the Full RTP Extension Header. The least significant 24 bits shall be
transmitted in the ctr_short field of the Short RTP Extension Header. The ctr value shall start at
0 and increment by 1 modulo 264 at every slice being encrypted

The ctr shall start at 0 for a new key and may continue counting for a given key if it is known
that the ctr value cannot wrap-around during the active time of the Sender/ Receiver.

A Receiver shall recover the full ctr value from the ctr_low and ctr_high fields of the Full RTP
Extension Header as follow:

ctr = ctr_high0|| ctr_high1 || ctr_high2 || ctr_high3 || ctr_low0 || ctr_low1 || ctr_low2 || ctr_low3

A Receiver shall recover the full ctr value from the ctr_short field of the Short RTP Extension
Header as follow:

prev24 = ctr5|| ctr6 || ctr7

new24 = ctr_short0 || ctr_short1 || ctr_short2

If the value corresponding to prev24 is smaller than the value corresponding to new24; then the
recovered ctr is ctr0|| ctr1 || ctr2 || ctr3 || ctr4 || ctr_short0 || ctr_short1 || ctr_short2; else the recovered
ctr is ctr0|| ctr1 || ctr2 || ctr3 || ctr4 || ctr_short0 || ctr_short1 || ctr_short2 + 00 || 00 || 00 || 00 || 01 || 00
|| 00 || 00.

Note: The else clause is adding 1 to the value corresponding to ctr0 ||
ctr1 || ctr2 || ctr3 || ctr4

RTP Header, RTP Header Extensions and RTP Payload Header shall not be encrypted. As per
RFC 8088 (How to Write an RTP Payload Format) The RTP Payload Header is defined as
follows: "RTP payload formats often need to include metadata relating to the payload data being
transported. Such metadata is sent as a payload header, at the start of the payload section of the
RTP packet. The RTP packet also includes space for a header extension [RFC5285]; this can be
used to transport payload format independent metadata, for example, an SMPTE time code for
the packet [RFC5484]. The RTP header extensions are not intended to carry headers that relate
to a particular payload format, and must not contain information needed in order to decode the
payload."

Depending on the RTP Payload Format, and as specified in the associated RFC specification, the
first N bytes of the RTP Payload may contain an RTP Payload Header, as defined in the RFC
payload format specification, and as such, shall not be encrypted. Otherwise, if the RFC payload

 37 VSF TR-10-13

format specification does not define an RTP Payload Header, the complete RTP Payload shall be
encrypted.

The mechanism used by a Sender or Receiver to detect which portion of the RTP Payload is
encrypted is outside the scope of this Technical Recommendation. It is expected that an AMWA
NMOS message and/or an SDP transport file associated with a Sender media stream would
provide the necessary payload format information to a Receiver.

Modes of operation using AAD shall calculate the MAC over the following aad_full Octet String
when the Full RTP Extension Header is used, and aad_short Octet String when the Short RTP
Extension Header is used, prior to being calculated over the payload data. The Octet String are in
binary form.

RTP_KV protocol adaptation:

aad_full = 00000000 || dynamic_key_version || ctr_high || ctr_low

RTP protocol adaptation:

aad_full = 00000000 || 00000000 || ctr_high || ctr_low

RTP and RTP_KV protocol adaptation:

aad_short = 0000000000000000|| 0000000000 || ctr_short

Note: Without AAD the MAC applies to the RTP Payload, precisely to the
RTP Payload content that is to be encrypted. As described before, RTP
Header, RTP Header Extensions and RTP Payload Header are not encrypted
and hence are not subject to the MAC. When using AAD additional data
is subject to the MAC while still keeping the objective of excluding
RTP/UDP/IP specific information.

Note: In order to obtain a fully secure MAC of the encrypted payload a
mac-then-encrypt scheme is used with the CMAC function. By using the
mac-then-encrypt instead of an encrypt-then-mac, one minimizes the
required key material, using the same key for both encryption and
authentication. The encrypt-then-mac construction would require using
different keys for the encryption and authentication.

21.1 RTP Header Extensions
The following RTP Extension Headers should be declared in the SDP transport file as per RFC
8285.

The following URN shall be used to associate the ID field of the header extensions for the full
and short flavors: "urn:ietf:params:rtp-hdrext:PEP-Full-IV-Counter", "urn:ietf:params:rtp-
hdrext:PEP-Short-IV-Counter".

 38 VSF TR-10-13

The a=extmap attribute shall be used to declare the RTP Extension Headers in the SDP transport
file using "sendonly" as the direction parameter.

1.1.1 CTR Full RTP Extension Header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xBE | 0xDE | length=4 |
+-+
| ID | L=14 |0| RESERVED |
+-+
| dynamic_key_version all Octet of the key_version Octet String |
+-+
| ctr_high first 4 Octet of the ctr Octet String |
+-+
| ctr_low last 4 Octet of the ctr Octet String |
+-+

Table 3- CTR Full RTP Extension Header

• All the field are in big-endian unless otherwise specified
• All the Octet String are binary form
• bit 8 of the second 32-bit word shall be set to 0
• RESERVED bits of the second 32-bit word must be set to 0
• ctr_high corresponds to the most significant bits of ctr (first 4 Octet of ctr Octet String)

o ctr0 || ctr1 || ctr2 || ctr3
• ctr_low corresponds to the least significant bits of ctr (last 4 Octet of ctr Octet String)

o ctr4 || ctr5 || ctr6 || ctr7

2.1.1 CTR Short RTP Extension Header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xBE | 0xDE | length=1 |
+-+
| ID | L=2 | ctr_short last 3 Octet of the ctr Octet String|
+-+

Table 4 - CTR Short RTP Extension Header

• All the field are in big-endian unless otherwise specified
• All the Octet String are binary form
• ctr_short corresponds to the least significant bits of ctr (last 3 Octet of ctr Octet String)

o ctr5 || ctr6 || ctr7

21.2 RTP Payload format

 39 VSF TR-10-13

+-+-+-+-+-+-+-+-+-+-+-+-+ ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RTP Headers |RTP Header Extensions | RTP Payload Header |0 1 2
+-+-+-+-+-+-+-+-+-+-+-+-+ ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|3 4 5 6 7 8 9 A B C D E F|0 1 2 3 4 5 6 7 8 9 A B C D E F|0 1 2 3
+-+
|4 5 6 7 8 9 A B C D E F|0 1 2 3 4 5|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Table 5 - RTP Payload format

After the unencrypted RTP Header, RTP Header Extensions and RTP Payload Header the
encrypted part of the RTP Payload shall be encoded as a big-endian sequence of bytes
subdivided into zero or more complete data slices of 16 bytes, that may be terminated by a partial
data slice of less than 16 bytes. Partial data slices shall be assumed to be zero-filled to complete a
big-endian data slice of 16 bytes by the AES encryption/decryption internal process. The
provided bytes of the partial data slice correspond to the most significant bytes of the big-endian
data slice. The zero filled bytes shall be ignored/discarded and not be considered as being part of
the RTP Payload.

Note: Any RTP Payload is allowed to terminate with a partial data slice
of less than 16 bytes.

A CTR Full RTP Extension Header shall be used in the first RTP packet of a video frame/field, a
video frame/field slice, and an audio frame/packet. A CTR Full RTP Extension Header shall also
be used in every RTP packet that is not categorized as video or audio. The usage of CTR Full
RTP Extension Headers shall ensure that the distance between the associated ctr values of two
consecutive Full RTP Extension Headers is less than 224 units. When privacy encrypting an
HDCP encrypted RTP stream in-place, and the HDCP encrypted RTP stream uses a Full RTP
Extension Header, a CTR Full RTP Extension Header shall be used. A CTR Short RTP
Extension Header shall be used when a CTR Full RTP Extension Header is not used.

The RTP packets after the first one, if any, completing a video frame/field, a video frame/field
slice or an audio frame/packet should use a CTR Short RTP Extension Header. The concept of
“frame” is used for uncompressed and compressed audio and video. The concept of “field” is
used for uncompressed and compressed video. The concept of “packet” is used for uncompressed
and compressed audio.

Note: A video frame/field may be segmented into slices. Each such slice
uses a CTR Full RTP Extension Header in the first RTP packet.

Note: An audio "packet" represents the generic grouping of a number of
audio samples into a processing unit.

When a message authentication algorithm is used along with the cipher, the MAC shall be stored
as the last N bytes of the RTP Payload. These last N bytes shall be used only by the
encryption/decryption process and are not part of the effective RTP payload before/after

 40 VSF TR-10-13

encryption/decryption. The RTP payload to encrypt shall be N bytes less than the maximum
payload length value possible for a given RTP payload format in order to allow including the N
bytes in the length value after encryption.

21.3 Dynamic key_version
A Sender/Receiver configured for in-band dynamic changes of the key_version may change the
key_version value dynamically at natural boundaries of the media content (frame, field or GOP
boundary for video and ancillary data, packet boundary for audio and generic data) to change the
Privacy Cipher encryption key. The current value of the key_version shall be transmitted in
clear to the peer through the dynamic_key_version field of the CTR Full RTP Extension Header.
The dynamic_key_version value shall correspond to the key_version value used for deriving the
encryption key of the associated RTP Payload.

When a Receiver configured for in-band dynamic changes of the key_version becomes active it
shall select an initial key_version value. Subsequently it may increment the selected
key_version value by 1 modulo 232 to change the associated privacy_key during the activation.
The key_version may be shared by a number of streams / sub-streams encrypted by a Receiver
Device. A Sender/Receiver configured for in-band dynamic changes of the key_version shall
use the key_version received in clear from the peer through the dynamic_key_version field of
the CTR Full RTP Extension Header to derive the Privacy Cipher decryption key of the
associated RTP Payload.

21.4 IPMX integration with HDCP support
The privacy encryption protocol RTP adaptation is compatible with IPMX devices already
supporting HDCP in AES-128-CTR mode. An HDCP encrypted content may be privacy
encrypted in-place using the same HDCP CTR Full/Short RTP Extension Headers.

• The FRZ control signal of the HDCP CTR Full RTP Extension Header shall be ignored
by PEP. It shall be set to 0 in the HDCP CTR Full RTP Extension Header such as to
always maintain HDCP encryption and the transmission of HDCP CTR Full/Short RTP
Extension Header with appropriate values.

• The StreamCtr value of the HDCP CTR Full RTP Extension Header shall be ignored by
PEP.

• The InputCtr value of the HDCP CTR Full/Short RTP Extension Header shall be used by
PEP as the ctr_high, ctr_low and ctr_short values.

The privacy cipher described in this document is compatible with the HDCP cipher when lc128
and streamCtr at the cipher level are forced to 0. The riv value derives from the iv' value. The ks
value is the key derived from PSK, key_generator, key_version and key_pfs values.

 41 VSF TR-10-13

21 Other transport protocol adaptations
For transport protocols other than RTP, this Technical Recommendation assumes no control over
the encryption process.

The key derives from the privacy_key defined in the Privacy Key Derivation section (key =
f(privacy_key)) using a process that is specific to the transport protocol adaptation.

The effective value of iv'_ctr is protocol specific.

The sections of the stream that are encrypted and/or authenticated are protocol specific.

